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Abstract

The current best-known algorithm for convex constrained nonsmooth online stochastic regret mini-
mization using a Linear Minimization Oracle (LMO, a la Frank-Wolfe) and a Stochastic First-order
Oracle (SFO) achieves a regret of O(K?3/%), where K is the number of iterations [26]. We provide
two novel single-loop nonsmooth Frank-Wolfe methods, P-MOLES & PD-MOLES, which achieve
the nearly-optimal online stochastic (non-adversarial) regret of O(v/K In(K)) for this problem
with a Lipschitz continuous function. Our methods only need a mild assumption that the func-
tion remains Lipschitz and can be queried on a slightly larger neighborhood around the constraint
set. Further, the last-iterates of our methods are guaranteed to be e-suboptimal feasible solutions
just after using O(¢~2) LMO calls and O(e~2) SFO calls. These offline oracle calls complexities
are optimal, and compared to the state-of-the-art offline method, MOLES [48], P-MOLES & PD-
MOLES have the added advantage of being single-loop methods which use only one LMO call and
one SFO call per iteration. This kind of simplicity is much preferred in practice, especially in the
online setting.

1. Introduction

In this paper we study the constrained online stochastic nonsmooth convex optimization (OSNCO)
problem where the objective is to minimize the stochastic cumulative regret:

K

Stochastic Regret, SR := kZ:l[E[f(a:kl)] — gg/{} f(2)] (1)

for some iterates {x;_1} lf:l from a compact convex constrained set X C RY, when given access to
a Stochastic First-order Oracle (SFO) of a Lipschitz continuous convex function f : X — R and a
Linear Minimization Oracle (LMO) for the convex constrained set X'. An SFO returns an unbiased
stochastic estimator of the subgradient of f at x when queried at z, i.e. E[SFO(z) | z] € 0f(x). An
LMO returns a minimizer of any linear functional (g, -) over the constraint set X'

LMO (g) € argmin (g, s) (2)
seX
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Table 1: Comparison of the online regrets of LMO-based algorithms for stochastic/adversarial set-
tings for smooth (Lipschitz V f)/monsmooth (Lipschitz f) problems. We only show single-
loop algorithms utilizing one LMO and one SFO call per iteration, except for 1-SFW [55]
& ORGFW [52]. Both exceptions require two correlated SFO calls (using the same
stochastic realization) per iteration, which is impossible with a general black-box SFO.

Algorithms Regret Assumptions
Online Adversarial setting (*we tightened dimension d terms from [26, Corollary 3.3])
Online Conditional Gradient [23] O(K3/%) Lipschitz f; in X
OSPF [26] O(dY/* K3/t Lipschitz f; in X
OSPF [26] O(d'/3 K?/3)t Lipschitz f; & V f; in X
Online Stochastic setting  (*requires SFO at two points under the same stochastic realization)
1-SFW [55] & ORGFW [52] O(VK) ERM SFO¥, Lipschitz f & Vf in X
OSFW [11] O(K?/3) Lipschitz f & Vfin X
P-MOLES & PD-MOLES (ours) O(VK In(K)) Lipschitz f in X"

At each iteration we play a feasible random action x;_; € X and consequently incur an expected
regret of E[f(z;_1)] — mingex f(x). Then we are can to query the SFO and LMO once before
playing the next round. The goal is to obtain a non-trivial o(K') cumulative SR ¢ after K rounds.

Traditionally, OSNCO has been studied, assuming access to the Projection Oracle (PO) to the
constraint set X, PO(z) = Py (z) = argmin,cy ||y — #(|3 [23]. This was successfully applied to
many important stochastic learning applications [46], such as support vector machines (SVM) [7],
robust learning [29], and utility maximization in finance [49]. However, in higher-dimensional
applications, even calling the PO once can be computationally prohibitive.

As an alternative to using the PO, Frank and Wolfe [15], in their seminal work, proposed the
Frank-Wolfe (FW) or conditional gradient method to minimize smooth deterministic convex func-
tions, which uses an LMO to access the constraint set. Of late, FW method and its variants have
found a resurgence in popularity in Machine Learning, as linear minimization is much faster than
projection in many modern applications such as a nuclear norm ball constrained problems [9], video-
narration alignment [1], structured SVM [31], and multiple sequence alignment and motif discov-
ery [53]. LMO based methods also have an added benefit of preserving some desirable atomic
structures, such sparsity and low-rankness, in their solution [13].

However, until very recently [48], only smooth problems had efficient LMO-based algorithms.
For a minimization problem min,cy f(x), we measure the efficiency of an algorithm using its
LMO/SFO calls complexity (LMO-CC/SFO-CC), which is defined as the worst-case number of
LMO/SFO calls the algorithm makes so as to find a feasible e-suboptimal solution, Z, i.e. f(Z) —
mingey f(x) < e. In the deterministic smooth case, FW method has an LMO-CC and SFO-CC
of O(1/e). Over the last decade several algorithms have been proposed for the stochastic smooth
setting. One of the best known algorithm, Stochastic Conditional Gradient Sliding (SCGS) method,
obtains the optimal LMO-CC of O(e~!) and an SFO-CC of O(e72) [36]. SCGS is not online
friendly because it involves multiple loops and multiple SFO and LMO calls per iteration, and the
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most general online setting restricts the algorithm from making more than a constant number of
LMO and SFO calls per iteration.

The current best online algorithms for stochastic smooth problems are variance reduction-based
1-SFW [55] and ORGFW [52] methods, and they achieve the nearly-optimal regret of O(\/F )
using only one LMO and two SFO calls per iteration (O suppresses constants and polylog fac-
tors). However, both these methods assume that the SFO is not a black-box and SFO can be
queried at two different points under the same realization of stochasticity, like in the case of empir-
ical risk minimization (ERM). Additionally, 1-SFW assumes bounded and Lipschitz function, and
ORGFW assumes bounded initial regret: f(zp) — minyex f(x) and bounded stochasticity in the
SFO: ||SFO (z) — V f(z)||. With a black-box SFO, the current best regret O(K?/?) in stochastic
smooth setting is achieved by OSFW [11], which additionally assume Lipschitzness of the function
and bounded initial regret. Our P-MOLES & PD-MOLES methods (assuming bounded gradients)
achieve the nearly-optimal (7)(\/? ) stochastic regret in the smooth setting, without any explicit
variance-reduction.

Online adversarial optimization is another problem closely related to and much stricter than
OSNCO. In the adversarial setting, one also assumes that the loss functions f, are also adversarially
chosen after the player plays her random action x;_1, i.e. we aim to minimize the cumulative regret:

K K
Adversarial Regret, Ry := Z E[fx(xg—1)] — min Z fr(x) 3)
k=1 e
Note that, usually an algorithm with a particular adversarial regret also achieves the same stochastic
regret. In the smooth setting, the best online adversarial regret is achieved by OSPF algorithm [26],
although it achieves a dimension d dependent regret O(d'/3K?/3).

For offline stochastic nonsmooth Lipschitz continuous problems, for many decades the known
best combined LMO and SFO calls complexity was O(¢~%), which was achieved by FW-PGD
(folklore) [48, Theorem 4], Randomized FW [34], and Online Conditional Gradient [23] methods.
The gap to a known lower bound of O(¢~2) LMO-CC was closed by MOLES [48], which achieves
the optimal LMO-CC and SFO-CC of O(s72).

MOLES [48], casts the constrained minimization problem into a composite optimization prob-
lem. This separates the nonsmooth objective and the constraint into two parts of a composite objec-
tive consisting of a nonsmooth unconstrained function f and a simple smooth constrained function.
Under the right conditions an approximate minimizer of this composite objective is also an approx-
imate minimizer of the original minimization problem. MOLES is a multi-loop scheme which uses
multiple LMO/SFO calls per iteration to solve this composite problem using the optimal O(s~2)
number of LMO and SFO calls. Hence, it is difficult to obtain an online regret for this algorithm
and the method could be challenging to implement and slow in practice.

There are only two known online algorithms for the OSNCO problem and they address the more
general adversarial setting. They are Online Conditional Gradient [24] and OSPF [26] methods
which achieve worst-case adversarial regrets of O(K?>/*) and O(d'/* K3/*) respectively. A natural
question to ask here is: can we achieve a better regret for the OSNCO problem?

We answer this question in the affirmative by providing two novel algorithm, P-MOLES (primal
averaging MOLES) and PD-MOLES (primal-dual averaging MOLES), which achieve a worst-case
online stochastic regret of O(v/K In(K)). This regret is optimal up to polylog factors [23]. Our al-
gorithm P-MOLES (PD-MOLES) solves the same composite objective as MOLES, but we employ
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a novel scheme which combines a primal averaging variant of the FW: PA-FW (primal-dual averag-
ing variant of the FW: PDA-FW) [34] and the Accelerated Stochastic Approximation: AC-SA [33]
(Accelerated Dual-Averaging [51]) scheme to solve it. This simplifies the multi-loop MOLES [48]
into a single-loop algorithm which only uses one LMO and SFO call per iteration.

Contributions: We summarize our contributions below and in Table 1. We assume that the function
f extends to a slightly larger neighborhood X” of the constraint set X i.e., f continues to be Lipschitz
continuous and SFO can be queried in this neighborhood.

e We provide two novel single-loop algorithms P-MOLES & PD-MOLES, both of which achieve
the optimal last iterate LMO-CC and SFO-CC of O(¢~?2) for finding a feasible -suboptimal
solution of a non-smooth stochastic convex problem.

e Our P-MOLES & PD-MOLES are also the first algorithms which achieves the nearly-optimal
regret of O(v/K In(K)) for the OSNCO problem. This regret is optimal up to polylog factors.
Surprisingly, these methods do not use any explicit variance reduction techniques, like other
algorithms which achieve this regret for smooth problems [52, 55].

2. Related Work

Frank-Wolfe methods: After the resurgence of interest in the FW or conditional gradient method [15,
38] for machine learning, several of its variants and their analyses have been proposed [3, 8, 16, 18,
34, 37, 41], and FW has been extended to stochastic or nonconvex [4, 22, 25, 30, 44, 45] settings.
However these methods provide dimension-free LMO-CC and SFO-CC only for smooth functions.
Nonsmooth Frank-Wolfe: After [50] posed the question of optimizing nonsmooth functions us-
ing LMO, few works studied the problem, however, apart from the optimal MOLES [48], all of
them were either inefficient [34, 48] or assumed more stricter assumptions [12, 43, 50]. Notably,
the special case of nonsmooth functions admitting smooth convex-concave minimax saddle point
reformulation, has been extensively studied [10, 14, 19-21, 27, 28, 39, 42, 47].

Online Frank-Wolfe: There has been several works which studied online stochastic or adversarial
regrets of LMO-based methods [11, 17, 23, 24, 26, 32, 52]. However, apart from the ones mentioned
earlier [11, 23, 24, 26, 52], none of the methods provide online regrets under the the general setting
of black-box LMO and SFO of our paper, using only one LMO and one SFO call per iteration.

3. Preliminaries and Notations

We consider Nonsmooth Convex Optimization with SFO (4) and LMO (2) accesses. Let X C R?
be a closed convex set of diameter Dy := maxy, z,cx ||x1 — 2], where || - || is the Euclidean norm
which corresponds to the inner product (-,-). Let X’ be enclosed in a closed convex set X’ C R?
to which it is easy to project, i.e. X C X”’. For simplicity, let X’ be a Euclidean ball of radius R
around origin. We can satisfy R = Dy by re-centering R? around any feasible point of X'. We
assume f : X’ — R to be a proper, lower semi-continuous (1.s.c.), convex Lipschitz function. We
use Jf () to denote sub-differential of f at x, and if f is differentiable we use V f(x) to denote its
gradient at z. Below we provide the definitions of Lipschitzness, smoothness and SFO.

Definition 1 A function f : X' — R is G-Lipschitz if and only if, | f(y) — f(z)| < G ||y — z|| for
all x,y € X'. For a convex [, this is equivalent to: maX ey MaXyecof(z) |9l < G.
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Definition 2 A function f : X' — R is p-strongly convex if and only if, ||y — z|* + {9,y — z) +
f(z) < f(y), forall z,y € X' and g € Of(x). Similarly, a differentiable function f : X' — R is
said to be L-smooth if and only if, f(y) < f(z) + (Vf(2),y — ) + |y — 2|2 forall z,y € X".

We consider problems with black-box Stochastic First-order Oracle (SFO) access, which computes
unbiased stochastic subgradient of a point = with a variance o2, as defined below:

SFO () := g, where E[g | 2] = g for some g € df(x), and E[||g — ¢|*| 2] < o*. 4)

We define e-suboptimal minimizer (solution) of Hli/I\} f(x) and the online stochastic regret as follows.
xre

Definition 3 We say that x. € X is an e-suboptimal minimizer of the constrained optimization
problem mingcy f(x) if, f(x:) — f(x) < e forall x € X. An algorithm which plays the actions
{ij}kK:_Ol by querying one LMO and one SFO after each round, is said to achieve the stochastic
online regret SRy := Zszl E[f(xg_1) — mingex f(z)] for the function f.

Moreau Envelope: The key idea behind MOLES [48] and our method is to use “smoothed” version
of the function via its Moreau envelope [40, 54] defined below.

Definition 4 For a proper l.s.c. convex function f : X' — R U {oo} defined on a closed convex set
X" and X > 0, its Moreau-(Yosida) envelope function, f : X' — R, is given by

1
(z) = Irlréi;ll f(z") + ﬁ”fﬂ — 2|, forallz e X'. (5)

Furthermore, the prox operator is defined: prox, ;(z) := argming ¢y, f(2') + e —2||%

Note that this definition of Moreau envelope is not standard as z’ is constrained to X’ C R¢
However, Lemma 7 (in Appendix) shows that this Moreau envelope and the prox operator still sat-
isfies most useful properties of the standard definition. This lemma implies that, to find an feasible
e-suboptimal solution of a nonsmooth f, one can instead minimize f) and achieve a faster conver-
gence by exploiting its smoothness. Concretely, if f is G-Lipschitz and A = O(¢/G?), then the
Lemma 7 ensures that solving f up to O(e) accuracy guarantees O(e) accuracy in the minimiza-
tion of the original function f (Lemma 8 in Appendix). This insight allows us to design a simple
method that can achieve optimal LMO-CC while the maintaining optimal SFO-CC.

4. Improved MOreau LMO Efficient Subgradient (MOLES) methods

In order to achieve the optimal LMO-CC and SFO-CC, MOLES [48] directly optimize the Moreau
envelope through the following joint optimization.

min [y (x,2") = f(2') + Ya(z,2")] where y(x,2") = in’ —z|?, (6)

zeEX ' eX! 2\
where the function ¥ : X’ x X’ — R is convex in the joint variable (z,z’). The main ad-
vantage of this new form is that, this is a composite optimization problem with a nonsmooth part
(corresponding to f(’)) and a 2/ \-smooth part (corresponding to (1/2\)||z" — x||*) with the con-
strained variable x € X only appearing in the smooth part. Now, by the Lemma 8 (in Appendix),
if A = O(e), an e-suboptimal minimizer of W), is also an approximate minimizer of the original
function f.
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4.1. Primal Averaging MOLES (P-MOLES)

MOLES essentially solves (6) simultaneously using Gradient Sliding [35] and Conditional Gradient
Sliding [36] frameworks, which are optimal for minimizing this composite problem (6). However
this is a multi-loop scheme with multiple calls to LMO and SFO per iteration, which is challenging
to implement and may be slow in practice. Therefore, we simplify this to a single-loop algorithm, P-
MOLES (Algorithm 1) by applying the the accelerated primal averaging FW (PA-FW) [34] scheme
on the constrained variable = and the AC-SA scheme [33] on the unconstrained variable z’ € X.
The iterates of the algorithm satisfy the following guarantees (a proof in Appendix A).

Algorithm 1: P-MOLES: Primal Averaging MOLES [48] method
Input: f, X, X', G, Dx, R, xo, K, A, {nk }re[x)»

Set z(, = 2z, = xo = 20 = o
fork=1,...,Kdo
8 1 2
Set Bk = (7x + ) » and Ve = 557
Set (x> y,) = (1 — i) (Tp—1,2%_1) + W (2k—1, 25,_1)
Set 2 = LMO (V,, U (yk, y3)) (2) // Note Vi, Wx(yk,y,) = L5%
Set g, = SFO (y;c) 4)
SetZ, = 2,1 — 5 (Vy U (Uks ) + Gk) /7 V(i) = B2
Set z;. =z, - min (1, R/||Z}||)
Set (:ck,xk) (1 - 'yk) (Qik_l, $;€_1) + ’Yk(Zk, Z];)
end

Output: (v, 2%)

Theorem 5 Let f : X' — R be a G-Lipschitz continuous convex function equipped with an SFO
with variance o2, and X C X' be a compact convex set of diameter D x equipped with an LMO and
be enclosed by the Euclidean ball X' of radius R (R < Dyx) around the origin. Then, the iterates

of P-MOLES (Algorithm 1) run for K iterations with A = 2V2Dy e < Nx—1 forall k € [K] and:

GVK
. . o V3D .
(a) stepsize choice: ny =n = —\/m forall1 < k < K satisfy
E[f ()] — min f(2) < [2V2GDyx + (2/V3)V2V4G? + 2D (K 2) =9 (1)
(b) stepsize choice: n, = \/W\Zic;iffor all 1 < k < K satisfy
E[f ()] — min f(2) < [2V2GDx + (8/V3) VAG? + o> R|(K1/?) = = and (8)
xe
K
SRk = Zf Ti—1) ml)r(1 f(@)] < V2GD VK (In(K) 4 2)+
k=1

(16/V3)V4G? + 0> RVE + 2GDxyIn(K + 1) :== AY  (9)
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Remarks: The theorem implies that after KX = O(%
xr such that E[f (xx )] — f(z*) < e. Therefore, P-MOLES uses a total of O(%) SFO and
LMO calls to reach e-suboptimal solution. Although, this achieves the same optimal oracle calls
complexities as the MOLES [48], our method being a single loop online algorithm may be more
practical and may have better performance. Using the second stepsizes choice, we can achieve a
nearly-optimal [23] online stochastic regret of O(GDx+v'K In(K)) when the time horizon K is
known a priori. This regret better than that of other algorithms for our black-box oracle setting

(Table 1). For unknown K, we can use the doubling trick [2] to obtain a regret of the same order.

) iterations, the algorithm can output

4.2. Primal-Dual Averaging MOLES (PD-MOLES)

Next, we provide a dual-averaging variant of the P-MOLES, PD-MOLES (Algorithm 2) which com-
bines primal-dual averaging FW (PDA-FW) [34] and Accelerated Dual-Averaging [51] schemes and
achieve the following convergence and regret guarantees (a proof in Appendix B).

Algorithm 2: PD-MOLES: Primal-Dual Averaging MOLES [48] method
Input: f, X, X', G, Dx, R, xo, K, A\, {n }re[i)»
Use the same steps as P-MOLES (Algorithm 1), but replace Line 5 and Line 7 with:

Set zj, = LMO (Zle 0; - Vy, ‘I’A(yj7y§»)) ) // Note Vi, Wx(yk,yh) = L5%
k —~ Y~y
Set 2} = 20 — g (5105 (Y 9a(93:9)) +95) /1 Vo oAy, vh) = 25"

Theorem 6 Under the same assumptions and real numbers defined 5&?) ), Egg) (8) and A&? )
as in Theorem 5, the iterates of PD-MOLES (Algorithm 2) run for K iterations with A = %,
Nk < Nk—1 forall k € [K] and

(a) the same stepsize choice as Theorem 5 (a), satisfy E[f (zx)] — mingex f(z) < E%)

(b) the same stepsize choice as Theorem 5 (b) satisfy E[f (xx)] — mingex f(z) < z—:gg)

V4G +02D? . b) |, 2V4G?+02D3VK

ﬁ and SRk = E[Z§:1 f (xk—l) — MiNgey f(:E)] < Ag() + #
Remarks: Although the above worst-case guarantee of the dual-averaging PD-MOLES is similar to
that of P-MOLES, as with other dual-averaging algorithms [51], in practice we expect PD-MOLES
to work better than P-MOLES.

+

5. Conclusion

We provide two novel single-loop algorithms which obtain the nearly-optimal O(K In(K)) online
stochastic regret for the OSNCO (1) problem. The same algorithms also achieve the optimal offline
last-iterate LMO and SFO calls complexities of O(¢~2), which was earlier obtained by a multi-loop
scheme, MOLES [48]. This makes our new methods more practical and easy to tune than the latter.
We note that, just like MOLES [48], our dimension-free results are limited only to the Euclidean
norm, since our results crucially depends on smoothness of the Moreau envelope and its regularizer,
which is not known for non-Euclidean geometry [6]. However, due to equivalence of norms we can
easily obtain dimension-dependent rates and regrets for any non-Euclidean geometry.
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Appendix

Lemma 7 (Lemma 1, [48]) For a closed convex set X', a convex proper Ls.c. function f : X' —
R U {oo} and A > 0, the following hold true for any x € X' and its Moreau envelope [y and the
prox operator T)(z) := prox, () as given in Definition 4.

(a) £x(x) is unique and f(2x(z)) < fi(z) < f(z),

(b) fx is convex, differentiable, 1/\-smooth and V fx(x) = (1/X)(x — Zx(x)), and,

(c) if f is G-Lipschitz continuous, then, ||z (z) — z|| < G\, and f(x) < fr(z) + G2\/2.

Lemma 8 (Lemma 2, [48]) Under the same assumptions as in Lemma 7, let X C X' be a con-
vex subset and W be defined as in (6). Then, (i) mingcy mingeys Uy (z,2') = mingey fi(z) <
mingex f(x), and (i) for any random vectors (x¢, z.) € X x X', E[f(2:)]—G?*N/2 < E[fa(z:)] <
E[W(ze, zL)].

Appendix A. Proof of Theorem 5

Proof [Proof of Theorem 5] For some arbitrary (x,2') € X x X”, consider the following potential
(Lyapunov) function:

/ / 8 1 ! /
Dy = k(k + 1)(Wy(zk, 2}) — Ua(z, 7)) + (X + %)sz —'||? (10)

This potential is similar to the one used to analyze the standard AGD for a 2/ \-smooth function [5].
Below we prove that this potential satisfies an approximate descent guarantee. Now, let £ > 1 and
notice that by 2/A-smoothness and convexity of 1)y

1
U@, @) < OxWks U) + (Vi (@8, %) — (ko wi)) + X”(xk,ﬂﬁk) — (yks v |I?

< (1 =) [WrWks vi) + (Vie, @e-1, Th1) — (Wi i)
AW ) + (Vs (2 22) = (s 03)) + 301G 24) = (i 2 )
< (1 = ) ¥a(Th-1, 2)—1)+
AW ) + (Vs (2 24) = (s ) + S0 4 = (20 1P) (D)

where we use the shorthand V. := [VI VI T := [V, (yk, v}.)T Vs (yk, v),) 7], and the
second inequality uses Lines 4 and 9 of Algo’rithm 1. Similarly, using GG-Lipschitzness, convexity
of fin X’ and Line 6 of Algorithm 1, and assuming E[g, | z] = g, € 0f(z},) (4) and g € Of(x},)
we get that

F@y) < flu) + (gr, ) — >+<gk Ge> Th = Yh)
< Fyr) + (gr (1= v)2h1 + () 2k — Uk) + 2G (2, — 220)
< (1 =) (k) + 9k Thomy — Y1) + 2G el 24 — 231l +
Vel f (yg,) + <gk>zk ?Jllg> - <5k‘a Zho1 — yl’<> - <5k‘a 2 — Zl,cfl>]
< (1 — ) f(@hor) + el F (k) + (Grs 2k — yi) )+
— Yk (Oks 241 — Vi) + W (2G + 10k |2 — 21 (12)

12
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where we use Lines 4 and 9 of Algorithm 1 and 6, = g — gx. Now multiplying (11) and (12) with
k(k + 1) and summing them, using the fact that v, /A = 2/A(k 4+ 1) < 2/ k = B/2 — 1/(2k n),
(Line 3 of Algorithm 1) we get that
]{(k + 1)\11)\(1%7-@;@)
< k(k = D)Wx(wp—1, Tp_1) + 26U (y, Y1) + 2k (Vi 21 — Yk) +
Bk

kak,x/ + ks 23, — y;c> + = ”Zk Zk—1||2] +

4 1
Lz = 2 ll® + 2k[- Sn szz 2 l® + 2G + 10kl — 2kl = (O, 251 — wi)]
(13)

Using the elementary inequality —bc?/2 4 ac < a?/2b for any real numbers a, b and ¢, we get

1 k.
s 12 — et + QG+ 10Dk — 2kt ]| < 57 (2G + [[6]))? (14)
2k ny, 2

As zy, is a corner point and the output of LMO (V,, ¥ (yk, y;,)) (Line 5 of Algorithm 1) we get
(VaUr(Yr, vi), 26 — Yk ) < (VaWr(yk, Yi) T — Yk) - (15)

Line 8 of Algorithm 1 implies that zj. € X” since X" is a ball of radius R. Thus, using Lines 7 and 8
of Algorithm 1 and 2/ € X’ we get

Bk N
2}, € argmin —- 5 2’ = (211 — (Via + )/ Be)l?
z'eX’!
/Bk / / 2 « v ~ / 6k / 1112 / 1112
7”% —zqlIF < < k't Gk, T > + ?(H'zkfl =27 = [lz, = 2'||7)
(16)

= (Vi + Gks 2%) +

Now substituting (14), (15) and (16) into (13) and using the fact that 6, = g — gr we get

k(k+ 1)Ux(zg, z,) < k(k — 1)Ux(xp—1, 2)_1) + 2kUx(yk, v3) + 2k (Vi g, o — yi) +
B

2k[(Viar + grs 2" = 4) + 5 (|21 —a'|* = |z — 2'1%)] +

4 k
ﬂm—%4W+%F@@GHWM-M%ﬁ—44N

< k‘(k )\If,\(.%'k 17$k 1) —I—Qk\I/)\(:E x )+
1 4 1

4

G+ e =1 = (5 + Dl — P +
1 1

(% - K)HZZA —2|* +

*szz — Zf— 1”2 + Ukk2(2G + ”(SkH + 2k <6l~c7 2271> . 17

where the last inequality uses ¥y = f -+ ¢ and the convexity of ¥, and the definition of §j =
1%\ + ﬁ (Line 3 of Algorithm 1). This proves the following approximate descent guarantee for the
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potential &, (10):

4 1 1
B < Bp1 + 2k = 2na |” 4 (= )2y = 2I* ek (26 + [|06l1) + 2k (0, 2" — 2 -
Mk Mk—1
(18)
Summing these descent lemmas for j = 1,..., k and taking expectation, with respect to the ran-
domness in the stochastic subgradients (gk) 1 used in the algorithm, on both sides we get
i 11
E[®;] < <I>o+ZE l2j = zj-1l® + (— = —)llzj_y = 2'II"] +
= nj o Mj-1
k
> Elmi*(2G + 10;11)° + 25 (85, — 251)]. (19)
j=1
Then the expectation of the sum of last two term can be bounded as follows
E[n; 52 (2G + 16;1)% — 27 (85, 2" — 2j_1)] < 1; 257 (4G + 0%) + 0, (20)

where we use linearity of expectation, (a + b)? < 2(a? + b?), variance of stochastic gradient
E[||0]|2] = o2 (4), and the fact that expectation of the second term becomes zero. The latter
follows from the definition of stochastic gradient E[g; | y;] = g; (4), which in turn implies that

E[(dj2" = 2j-1)] = E[E[(g) = 9.2 = 2j_1) |50 y]] = B0,z —yi)) = 0. @D

Next using (20) in (19) we get that

1 1
L] <¢0+ZE 2 = 21l + (= = 21250 — I + 2467 + 07) Zw
Jj=1 77] -1 ~
(22)
This directly implies the following convergence guarantee for W for all £ > 1.
Bl o1, 3] — ot ) < (2 Dyl oty I+
T, T — €T. T _ i I
XN\ Tk, Ty, AL, A o’ k(k41) Me(k+1) gt J j—1
k , .
11 Elllz o — 27 2(4(;2 +o?) )
o i (23)
;(m 77j—1) k(k+1) k(k+1) ZU;]

where we use the initialization z) = xo. Next setting z = 2’/ = z* € X C X’ for some z* €
argmin,c y f(x), assuming n; < n;_q andn, 1 ¢ R, and then using Lemma 8, (6) and the diameters
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Dy of X and 2R of X’ we get that

4 i) [0 — »’v*|!2

k
X A
E[f (z)] - f(a) < (5 + o) K D) k:+1 ;E yzj—zj_1|y2]+a2§ +

11 E[lZ —rc*H] 2402 o2
2 (=) ,j(k1+1) ( + Zmy

=1 nj M1
AD%L A\ D% AR 1 1. 204G +0Y) ¢,
= +GPC 4 + — = )+ TN Ty,
Ak 2 nmok(k+1) k(k:+1)(nk 70 k(k+1) ; i
(24)

For part (a) setting k¥ = K and using the the given parameter choices, A = Qf\/%“ andn; =n =

V3 Dy forall()gng,ande(:lj?:wweget

V2 K3 (4G%462)

2v2GDy N 2V2V/4G? + 62Dy
VK V3VEK

For part (b) using the the given parameter choices, A = 2v2 Dy n; = __V3R foralll <j <

GVK 'V 33 (4G2+02)
K.ongt =0, 5 V7 < (2/3)VE(k + 1), we get

V2GDy K 4R*VE  m4(4G? + o?)
v GG T v

E[f (k)] = f(2") < (25)

E[f (z)] = f(2") <

2GDy K 8v4G? ’R
Su(7+1)+$, (26)
VK k V3VEk
Setting, k = K, we get a last iterate convergence result like part (a)
. _20/2GD 8V4G? + 02R
E[f (ex)] — f(a*) < = : 27)

VE T AVE

Finally, summing (26) inequality fork = 1, ..., K, and using ) | szl % <In(K)+1land 3K k=175 <
2K, we get the desired regret bound

ZE (z*)] < V2GDxVK(In(K) +2) + \1/%\/4(;2 +02RVK.  (28)
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Then using the above bound, the diameter Dy of X, and the fact that 30 v, = Soh | 2/(k+1) <
2In(K + 1) we get

K K
S E[f(zro1) — f@)] D R[S (w) = f(@*)] + GE[[lap—1 — axll]
k=1 k:}:(l p
<Y E[f (z) = F@)] + D wGE[[|lzr1 — 2]l
k=1 k=1
<V2GDxVEK(In(K) +2) + \1/63\/4612 +02RVK +
2GDx In(K + 1) (29)

Appendix B. Proof of Theorem 6

Proof [Proof of Theorem 6] For some arbitrary (z,2') € X x X", consider the following potential
function which is different from (10).

Oy := k(k + 1)Ux(w, 2%) — 220, 21) — k Brllzr, — 20117, (30
where
k
We(2ks 24) = D3 (Vs 2k = yk) + (Vi + G5 2% — Ui)] - 3D
j=1
Using (13) we get,

k(k+ 1)\11)\(1‘]6,3327)
< k(k = 1)Ux(zp—1,2)_1) + 26U\ (yk, y3,) + 2k (Viz 26 — y) +

. Bk 4
2h[(Viar + G 21— i) + o 2% = 22 P+ S ll2n = 2 | +
1
2h[ 5 - (B et (2G + 10k ID 2% = 21l = (Ors 2hm1 — Yi)] (32)

We can bound the third and fourth terms on the RHS above as follows. First using 21 =
LMO (E j Vy]\IIA(y],yJ)> (Line 5 of Algorithm 2) we get

k k—1
k<vkxazk_yk —22 ]x»zk y] _22] ]Ivzk‘ >]
: ]:]_
k k—1
Z Vias 2k =Y =203 5 (Ve 21— 95)] - (33)
: ]:1
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Line 8 of Algorithm 2 implies that z;_;, € X’ since A” is a ball of radius R. Thus, using Lines 7
and 8 of Algorithm 2 and 2’ € X’ we get
2} € argmin @Hx’ — (2 —
x'eX! 2

L~ _
iBi ;j (Vi + 3P (34)

Using the (k — 1)B_1-strong convexity of the above projection problem at ¢ = k — 1 and the
optimality of the projection z;,_, we get

k <vk,x’ + /g\ka Z;c - y;c>

k k—1
<D 3 Viw + 82— v = D i (Vi + G50 2% — vl
j=1 j=1
- . k—1)Bk-1
< (35 (Taw 33— + g
k-1
—1)Br—1
i (T b — )] - DR ) @)
7j=1

Now substituting (14), (33) and (35) into (32) we get

k(k + 1)U (zg, 2%) < k(k — D)W (zp-1, 2)_1) — 21 (251, 251) — (b — 1) Bl zhy — 20l° +

1 1
22k, 21,) + kBllz — 20/1° + (— — —) |2k — 26— * +
Tk Nk—1
4
*sz — 2k |” + mek®(2G + |0k 1) + 2k (Ok, Y1 — 1) (36)

where the last inequality uses the definition of 3; = )\ + k (Line 3 of Algorithm 2). This proves
the following approximate descent guarantee for the potentlal d;, (30):

4 1 1
L z1 ) + (% - K)Hz; — 25 4|1 + 2k (2G + [105]1)? + 2k (Sk, yh

(37

Then using arguments similar to the ones used to get (23) we can get the following convergence
guarantee

2052k, 23,) 2k By,

AN _ I 2
k k / / 2 k
1 1 Elllz; — 2l | 2(4G? + 0?)
. 2 - J J 2
SV IES) k:+1 ;E Iz =zl ]+Z(m ) T REED T Rk D) ;W '

(38)
Next, using the definition of I; (13), the k Bi-strong convexity of the projection problem (34) at
i = k and the optimality of the projection z;,, and z;, = LMO (Z?:l J - Vi, Ualyy, yé)) (Line 5 of
Algorithm 2) we get

k
(e, 2) + 2 moll? < ) + S ot~ 2 - A1) 69)

17
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Using the definition of stochastic gradient E[g; | yi] = g; (4), V) = f + 95, and convexity of ¥
we can show that

Ellk (2, 21,)] Z] a5, 45) + (Viar® = y5) + (Viw + 352" = y5))]
= E[Zj(%(ypyﬁ) + (Ve —yj) +E(Vjw + 35,2 — o)) 1y5])]

Z] U\ ( yj,yj + (Vjz o —y;) + <Vj,g:’ +gj, 7 — y§>)]

< k(k: +1)

- 2
Substituting (39), (40) and k8, = Y —|— (Llne 3 of Algorithm 2) in (38) and using the initialization
ZO = o we get

U (z,2"). (40)

/”2

)||:C0 —zx

k
]E[\I/)\ (xk,a:;)]—\lu(a:,x’) < ( k:(k‘—l—l) k‘—l—l ZE ’Zj—Zj_1H2]+
j:l

k / !
1 [HZ] - qu” ] 2(4G2 —|— o?
2w kD SO E

Next setting z = 2’ = 2* € X C X’ for some z* € argmin,cy f(z), assuming 7; < n;_; and
Mo 1 ¢ R, and then using Lemma 8, (6) and the diameters Dy of X and 2R of X’ we get that

i) [0 — fE"‘H2

4 F A
Blf ()] - @) < (5 + T L El — sl + 6 +
]:1

e’ k(k+1)
z’“:(1 1 )E[IIZ§ 2P 2(4G2 + 0?) & v
‘=i w1 k(k+1) k(k+1) ="
4D? A D? 4R? 1 1 2(4G? + o2
= X 22 + X + (* - — an J
Ak 2 Nk k(k‘ + 1) k‘(k‘ + 1) Nk 1o ]{J + 1

(42)

Part (a) can be proved exactly like we the proved Theorem 5 (a) (25). Similarly, for part (b), we
can obtain the following inequalities, using similar arguments like in the proof of Theorem 5 (b),
by noting that the above inequality (42) differs from (24) only in the third term, as this term scales
with 1 /7 instead of 1 /1.

g 2 g
Bpteal sy < VIS0 (K ) VTR AT
o 2
E[f(wx)]—f(x*)é%/?/%p“ 45;;;}%(8 %) (44)
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FQN

fl@p—1) — f(@")] < V2GDxVE (In(K) +2) + 7@3\/»(8 + 7)

i
I

QGDX ln(K + 1)

19

(45)
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